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Abstract
We consider quantum systems with a chaotic classical limit that depends on
an external parameter, and study correlations between the spectra at different
parameter values. In particular, we consider the parametric spectral form factor
K(τ, x) which depends on a scaled parameter difference x. For parameter
variations that do not change the symmetry of the system we show by using
semiclassical periodic orbit expansions that the small τ expansion of the form
factor agrees with random matrix theory for systems with and without time
reversal symmetry.

PACS numbers: 03.65.Sq, 05.34.Mt

1. Introduction

One of the characteristic features of quantum systems with underlying chaotic dynamics lies
in statistical fluctuations of their spectra. If the energy levels are scaled such that their mean
separation is 1 then the statistical distribution of the levels of individual quantum chaotic
systems are found to be universal in the semiclassical limit h̄ → 0 and to agree with those of
eigenvalues of random matrices [1]. Systems with or without time reversal symmetry (TRS)
are described by the Gaussian orthogonal ensemble (GOE) and the Gaussian unitary ensemble
(GUE) in the absence of half-integer spin and other symmetries.

Universality can be observed, however, not only in the spectrum of an individual quantum
system, but also in the way in which the spectrum changes due to an external perturbation.
In the following we consider quantum systems that depend on an external parameter whose
alteration does not change the symmetry of the system and for which the classical dynamics is
chaotic for any parameter value. Correlations between the spectra of these systems at different
parameter values are also found to be universal functions of the parameter difference provided
that the parameter is scaled in an appropriate way [2, 3]. The universal correlation functions
again agree with those of random matrix theory (RMT) and have been derived for the GOE
and the GUE. The early developments of parametric spectral correlations are reviewed in [4].
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One main approach to understanding the connection between quantum chaos and RMT
has been the application of semiclassical methods. Spectral statistics that are related to the
two-point correlation function of the density of states, like its Fourier transform, the spectral
form factor K(τ), are expressed semiclassically by a double sum over the periodic orbits of
the classical system. An evaluation of this double sum in the diagonal approximation, which
pairs orbits with themselves or their time reverse, yields the first term in the small τ expansion
of K(τ) in agreement with RMT [5, 6]. Higher order terms are due to pairs of correlated
periodic orbits. In recent years there has been a rapid development of methods to evaluate
orbit correlations that are responsible for the agreement with RMT. The first off-diagonal term
for K(τ) was evaluated in [7, 8], and the complete small τ expansion was obtained in [9–11].
Similar methods have been applied since to derive off-diagonal terms, for example, for the
conductance [12, 13], the shot noise [14] and the GOE–GUE transition [15].

Parametric spectral correlations have previously been treated within the diagonal
approximation [16–18]. In this paper we extend semiclassical techniques for off-diagonal
terms to include parametric correlations. For systems without time reversal symmetry we
derive all terms in the small τ -expansion of the parametric spectral form factor in a closed
form. In the GOE case we show that the expansion up to order τ 7 agrees with RMT. One main
reason for the universal result is that in the semiclassical limit h̄ → 0 the relevant quantum
fluctuations are due to very small parameter variations on the classical scale. One assumption
is that the parameter dependence is in some sense typical. Specifically, we assume that the
derivatives of the actions of very long periodic orbits with respect to the parameter have a
Gaussian distribution [17, 18]. This excludes, for example, perturbations by a point scatterer
for which off-diagonal terms were calculated in [19].

In section 2 we introduce the parametric spectral form factor and in section 3 we state
results of random matrix theory for it. In section 4 we consider its semiclassical approximation
and the diagonal approximation, while in section 5 we derive the off-diagonal terms. For
systems without time reversal symmetry the expansion is summed in section 6, and section 7
contains our conclusions.

While writing up our paper the preprint [20], which is closely related to our work, appeared
on the archive. Nagao et al investigate parametric correlations that depend on a magnetic field
difference, and obtain the universal results for the GUE case and the GOE–GUE transition by
periodic orbit expansions. Our work is complementary in that we treat arbitrary parameters
and consider also the GOE case.

2. The parametric spectral form factor

One way to characterize fluctuations in quantum spectra is to consider correlation functions of
the density of states. For parametric correlations the density of states depends on the energy
E as well as on a parameter X, and in the semiclassical regime it can be written as the sum of
a mean part and an oscillatory part

d(E,X) =
∑

n

δ(E − En(X)) ≈ d̄(E,X) + dosc(E,X), (1)

where En(X), n = 1, 2, . . . , is the nth energy level as a function of the parameter X. The mean
density of states in an f -dimensional system is given by d̄(E,X) ∼ �(E,X)/(2πh̄)f in the
semiclassical limit h̄ → 0. �(E,X) is the volume of the surface of constant energy in phase
space at energy E and parameter X.

In order to obtain a universal parametric spectral correlation function one has to perform
two unfoldings, one in energy E and one in the parameter X of the system. A new energy
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parameter is defined by

Ẽ = N̄(E,X), (2)

where N̄(E,X) is the mean part of the spectral staircase N(E,X) = ∫ E

−∞ dE′d(E′, X). In
terms of the new energy Ẽ the density of states has a mean value of 1. The spectral statistics
are evaluated in the semiclassical limit in an interval �Ẽ that is classically small but contains
a large number of energy levels, i.e. it satisfies Ẽ � �Ẽ � 1.

A new parameter X̃ is introduced by [2, 21]

X̃ =
∫ X

X0

dX′σ(X′), σ (X′) =
√

〈vn(X′)2〉, (3)

where vn(X) = ∂Ẽn/∂X are the level velocities and the average is performed over the levels
in the interval �Ẽ. X0 is an arbitrary parameter value at which X̃ = 0. In terms of the new
parameter X̃ the level velocities have a unit variance.

We may then define the unfolded two-point correlation function by

R2(η, x) =
〈
d̃osc

(
Ẽ +

η

2
, X̃ +

x

2

)
d̃osc

(
Ẽ − η

2
, X̃ − x

2

)〉
Ẽ,X̃

, (4)

where d̃(Ẽ, X̃) is the density of states of the unfolded spectrum, and the average is performed
over the energy interval �Ẽ as well as over a parameter interval �X̃. The relation to the
original density of states is given by

d̃(Ẽ, X̃) = ∂N(E,X)

∂E

∂E

∂Ẽ
= d(E,X)

d̄(E,X)
, (5)

and in the semiclassical limit we find that

R2(η, x) ∼
〈
dosc

(
E + η

2d̄
+ xρ

2σ
,X + x

2σ

)
dosc

(
E − η

2d̄
− xρ

2σ
,X − x

2σ

)〉
E,X

d̄(E,X)2
. (6)

Equation (6) has been obtained by linearizing the unfolding equations (2) and (3), because x
and η correspond to small changes on the classical scale. Explicitly, d̄ is of order h̄−f and
σ = σ(X) is of order h̄−(f +1)/2 (see equation (20) later). The term xρ/2σ takes account of
the change of the energy when X is changed while keeping Ẽ fixed

ρ = ∂E

∂X

∣∣∣∣
Ẽ

= −∂N̄/∂X

∂N̄/∂E
. (7)

In the following, we will consider the parametric spectral form factor which is obtained
by a Fourier transform of the parametric two-point correlation function

K(τ, x) =
∫ ∞

−∞
R2(η, x) e−2π iητ dη. (8)

3. Results from random matrix theory

The parametric two-point correlation function R2(η, x) has been derived in the context of
disordered systems [2, 22] for the GUE and the GOE. For the GUE case it is given by

RGUE
2 (η, x) = 1

2

∫ 1

−1
dλ

∫ ∞

1
dλ1 cos(πη(λ1 − λ)) exp

(−π2x2(λ1
2 − λ2)/2

)
. (9)
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After performing the Fourier transform in (8) to obtain the parametric form factor we arrive at

KGUE(τ, x) = 1

2

∫ 1

−1
dλ

∫ ∞

1
dλ1

× exp
(−π2x2

(
λ1

2 − λ2
)/

2
)

[δ(λ1 − λ − 2τ) + δ(λ1 − λ + 2τ)] . (10)

For positive τ the second delta function does not contribute because λ1 � λ. From the first
delta function we get the relation 2τ = λ1 − λ. In the case τ < 1, which we consider in the
following, the domain of integration for λ1 is reduced to 1 � λ1 � 1 + 2τ , and we obtain

KGUE(τ, x) = 1

2

∫ 1+2τ

1
dλ1 e2π2x2τ(τ−λ1) = sinh(2π2x2τ 2)

2π2x2τ
e−2π2x2τ , τ < 1. (11)

For comparison with the semiclassical expansion we expand the sinh function and define
B = 2π2x2/κ where κ = 1 and 2 for the GUE and GOE cases, respectively.

KGUE(τ, x) = e−Bτ

∞∑
k=0

B2kτ 4k+1

(2k + 1)!
. (12)

The parametric correlation function for the GOE case is given by a triple integral

RGOE
2 (η, x) =

∫ 1

−1
dλ

∫ ∞

1
dλ1

∫ ∞

1
dλ2 cos(πη(λ − λ1λ2))

(1 − λ2)(λ − λ1λ2)
2(

2λλ1λ2 − λ2 − λ1
2 − λ2

2 + 1
)2

× exp
(−π2x2

(
2λ1

2λ2
2 − λ2 − λ1

2 − λ2
2 + 1

)/
4
)
. (13)

An evaluation of the Fourier transform to obtain the parametric form factor results in a
replacement of the cos term in the triple integral in (13) by a sum of the two delta-functions
δ(λ − λ1λ2 ± 2τ). For τ > 0 only the delta function with the plus sign in the argument
contributes because λ1λ2 � λ. As we are again considering the case when τ < 1 our domain
of integration for the other two variables is given by 1 � λ1 � 1 + 2τ and 1 � λ2 � 1+2τ

λ1
.

When we perform the integral over λ we are left with

KGOE(τ, x) =
∫ 1+2τ

1
dλ1

∫ 1+2τ
λ1

1
dλ2

4τ 2
(
1 − λ1

2λ2
2 + 4τλ1λ2 − 4τ 2

)
(
1 + λ1

2λ2
2 − λ1

2 − λ2
2 − 4τ 2

)2

× exp
(−π2x2

(
1 + λ1

2λ2
2 − λ1

2 − λ2
2 + 4τλ1λ2 − 4τ 2

)/
4
)
, (14)

for τ < 1. In order to evaluate this integral as a series in τ it is useful to remove the
τ dependence from the limits. This is done by changing the integration variables using
λ1 = 1+τy1 and λ1λ2 = 1+τy2. Then the expansion of the parametric form factor is obtained
by expanding the integrand for small values of τ . Using Maple we performed this expansion
up to seventh order and evaluated the integrals with the following result:

KGOE(τ, x) = e−Bτ

[
2τ − 2τ 2 − (2B − 2)τ 3 +

(
2B − 8

3

)
τ 4 +

(
5B2

3
− 8B

3
+ 4

)
τ 5

−
(

5B2

3
− 4B +

32

5

)
τ 6 −

(
41B3

45
− 11B2

5
+

32B

5
− 32

3

)
τ 7 + · · ·

]
, (15)

where B has been defined after equation (11). We extracted an exponential factor from the
expansion as this is convenient for the comparison with the semiclassical result.
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4. Semiclassical approximation

Our starting point is the semiclassical expression for the parametric form factor for chaotic
systems that is obtained by inserting the Gutzwiller trace formula into (6) and evaluating the
Fourier transform (8) in leading semiclassical order [17, 18]

Ksc(τ, x) = 1

TH

〈∑
γ,γ ′

Aγ A∗
γ ′ exp

(
i(Sγ − Sγ ′)

h̄

)
exp

(
ix(Qγ + Qγ ′)

2σh̄

)
δ

(
T − Tγ + Tγ ′

2

)〉
.

(16)

Here TH = 2πh̄d̄(E) is the Heisenberg time, and τ = T/TH . The double sum runs over all
periodic orbits of the system with actions Sγ and amplitudes Aγ . In comparison to the spectral
form factor K(τ) there is an additional dependence on the parametric velocities Qγ ,

Qγ = ∂Sγ

∂X

∣∣∣∣
Ẽ

= ρ
∂Sγ

∂E
+

∂Sγ

∂X
. (17)

Before discussing the off-diagonal terms in the next section we briefly review the results
for the diagonal approximation that involves only pairs of orbits which are either identical or
related by time reversal

Kdiag(τ, x) = κ

TH

〈∑
γ

|Aγ |2 exp

(
ixQγ

σh̄

)
δ(T − Tγ )

〉
. (18)

Here κ is 2 if the system has time reversal symmetry and 1 if it does not.
A key ingredient in the semiclassical evaluation of the parametric form factor is the

distribution of the parametric velocities Qγ in the limit of very long periodic orbits. It
has been shown for chaotic systems that the Qγ have a mean value of zero and a variance
proportional to their period [16]

〈Qγ 〉 = 0,
〈
Q2

γ

〉 ∼ aT , T → ∞, (19)

where the averages are performed over trajectories with period around T. The proportionality
factor a in (19) is semiclassically related to the variance of the level velocities [21, 23]

σ 2 ∼ aκd̄

2πh̄
. (20)

It is generally assumed that the Qγ have a Gaussian distribution (see e.g. [18]), and this is
the main assumption that will be used in the following. Assuming in addition that the average
over the Qγ can be done independently from the actions of the orbits, one obtains〈

exp

(
ixQγ

σh̄

)〉
= exp

(
− x2aT

2σ 2h̄2

)
= e−BT/TH , (21)

where B = 2π2x2/κ has been introduced after equation (11). The remaining sum over
periodic orbits is evaluated with the Hannay–Ozorio de Almeida sum rule [5]〈∑

γ

|Aγ |2δ(T − Tγ )

〉
∼ T , as T → ∞, (22)

which results in

Kdiag(τ ) ∼ κτ e−Bτ , (23)

as h̄ → 0. This is in agreement with the first term in the expansion of the random matrix
results, (12) and (15). In the following we show how higher order terms in this expansion can
be obtained from off-diagonal contributions.
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5. Off-diagonal contributions

The off-diagonal terms of the parametric form factor are due to pairs of trajectories which are
correlated [7, 9, 10]. In the following we briefly review the main steps in the derivation of the
semiclassical expansion of the spectral form factor (in our notation K(τ, x = 0)) according to
[10, 11]. The correlations that are important for the expansion of the form factor for small τ

are due to close self-encounters of a periodic orbit in which two or more stretches of an orbit
are almost identical, possibly up to time reversal. In general, a long periodic orbit has many
of these encounter regions, and they are connected by long parts of the orbit, the so-called
‘loops’. The correlated pairs of orbits are almost identical along the loops, but they differ
in the way in which the loops are connected in the encounter regions. Correlated orbit pairs
have certain ‘structures’ that are characterized by the number of encounter regions V in which
the loops are connected in a different way, the number of involved orbit stretches lα in each
encounter region α, and the way in which the loops are connected by these stretches. A more
accurate definition of structures can be given by putting them in a one-to-one relation with
permutation matrices that describe the reconnections of the loops. One defines further a vector
v whose lth component, vl , specifies the number of encounter regions with l stretches, and the
total number of orbit stretches is denoted by L. Hence

V =
∑
l�2

vl, L =
∑

α

lα =
∑
l�2

lvl . (24)

The semiclassical contribution to the form factor is evaluated in two steps. First the summation
over orbit pairs with the same structure is evaluated by using that long periodic orbits are
uniformly distributed over the surface of constant energy in phase space. Then the summation
over the different structures is performed which is a combinatorial problem.

In the following we discuss a few details of this calculation. In each encounter region α

with lα orbit stretches one chooses a perpendicular Poincaré surface that is centred on one of
the stretches. The relative positions of the piercings of the other stretches through the Poincaré
surface are described by coordinates along the stable and unstable manifolds. The partner
periodic orbit connects the loops that start and end at the encounter region in a different way
and the resulting contribution to the action difference is given in the linearized approximation
by

(�S)α ≈
lα−1∑
j=1

sαjuαj , (25)

where sαj , uαj , j = 1, . . . , lα − 1 are appropriate differences of the coordinates along the
stable and unstable manifolds. For ease of notation we discuss here the two-dimensional
case in which the coordinates sαj and uαj are scalars. If the Poincaré surface is moved along
the stretches in the encounter region these coordinates decrease or increase, exponentially,
however their product remains constant. The length of the encounter region is determined by
requiring that all coordinates remain smaller than an arbitrary small constant c whose exact
size is not relevant for the following calculations. This defines the encounter time tαenc which
depends on the coordinates in the Poincaré section.

The uniform distribution of the long periodic orbits on the energy shell is then invoked
to replace the sum over all orbit pairs with the same structure by an integral over the
coordinates in the Poincaré surfaces. It is convenient to also sum over all structures with
the same vector v, because structures with the same v give the same contribution to the form
factor (because the form of (27) below depends only on v and not a particular structure).
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Then

Kv(τ ) = 1

TH

fixed v∑
(γ,γ ′)

|Aγ |2 exp(i�Sγ /h̄)δ(T − Tγ ) ∼ κτN(v)

×
∫

dL−V s dL−V u
wT (s,u)

L
exp(isu/h̄), (26)

so that Ksc(τ ) = Kdiag(τ ) +
∑

v Kv(τ ). N(v) is the number of structures with the same v,
and s and u are vectors whose components are the sαj and uαj for all α and j . In (26) the
amplitudes and periods of the two correlated orbits are set equal, and the factor 1/L takes care
of an overcounting related to the choice of an initial point of the trajectory. wT (s,u) is the
density of the self-encounters for a given structure and separation coordinates sαj and uαj . For
long orbits it is given asymptotically by

wT (s,u)

L
∼ T

(
T −∑

α lαtαenc

)L−1

L!�L−V
∏

α tαenc

. (27)

The integrals in (26) are evaluated by using∫ ∏
j

dsαj duαj

(
tαenc

)k
exp


i
∑

j

sαjuαj /h̄


 ≈

{
0 if k = −1 or k � 1
(2πh̄)lα−1 if k = 0.

(28)

Property (28) has the consequence that after expanding the numerator of (27) the only terms
that survive are those that contain a product of all encounter times tαenc which is cancelled by
the denominator. This allows the evaluation of the contributions of all structures, and the full
expansion of the form factor is then obtained by summing up these contributions.

Let us now come back to the parametric form factor K(τ, x). As a first step we neglect
differences between the periods, amplitudes and parametric velocities of the partner orbits

Ksc(τ, x) ≈ 1

TH

〈∑
γ,γ ′

|Aγ |2 exp

(
i(Sγ − Sγ ′)

h̄

)
exp

(
ixQγ

σh̄

)
δ(T − Tγ )

〉
. (29)

In the following we consider one particular structure and evaluate the contributions of all orbit
pairs with this structure to the double sum in (29). The new term that needs to be considered
carefully is the exponential factor involving the parametric velocities Qγ . Similarly as for
the diagonal approximation, we want to replace this term by an average over orbit pairs of
the considered structure, assuming that this average can be performed independently from the
actions and amplitudes of the orbits. A direct application of (21) would not be correct. It
would just yield a simple multiplicative factor exp(−BT/TH ).

The important point to note is that all the orbit pairs of a particular structure have the
same number and types of encounter regions. In each encounter region there are almost
identical orbit stretches, and also the changes of the action along the stretches in an encounter
region are almost identical when the external parameter is varied. This has to be taken into
account when performing the Gaussian average. In other words, all the considered orbit pairs
have systematic correlations between different parts of the same periodic orbit, and one has
to consider the average over the parametric velocities for the loops and encounter regions
separately. One has Qγ = Q

loops
γ +

∑
α lαQα

γ , where Qα
γ is the parametric velocity of one of

the lα orbit stretches in the encounter region α. Applying (21) to the change of the actions
along the loops yields〈

exp

(
ixQ

loops
γ

σh̄

)〉
= exp(−BTloops/TH ), (30)
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while the contribution from the lα orbit stretches in the encounter region α follows as〈
exp

(
ixlαQα

γ

σh̄

)〉
= exp

(−Bl2
αtαenc

/
TH

)
. (31)

Combining these contributions one finds that the average over the parametric velocities is
given by〈

exp

(
ixQγ

σh̄

)〉
= exp

(
−B

(
T −

∑
α

lαtαenc

)/
TH

)
exp

(
−B

∑
α

l2
αtαenc/TH

)
. (32)

As a consequence, the inclusion of the parametric velocities leads to a replacement of
equation (26) by

Kv(τ, x) = 1

TH

fixed v∑
(γ,γ ′)

|Aγ |2 exp(i�Sγ /h̄) exp

(
ixQγ

σh̄

)
δ(T − Tγ )

∼ κτN(v)

∫
dL−V s dL−V u

zT (s,u)

L
exp(isu/h̄), (33)

where
zT (s, u)

L
= wT (s, u)

L

〈
exp

(
ixQγ

σh̄

)〉

∼ e−BT/TH T
(
T −∑

α lαtαenc

)L−1∏
α exp

(−Blα(lα − 1)tαenc

/
TH

)
L!�L−V

∏
α tαenc

. (34)

The remaining steps involve an evaluation of the integrals in (33) by using (28). This is
done explicitly in the following. The numerator in (34) is expanded in the encounter times
and, because of (28), the only terms that contribute in the semiclassical limit are those where
the encounter times in the numerator and denominator cancel exactly. As a first step we can
expand the exponentials as a power series up to first order

zT (s, u)

L

⇒ e−BT/TH T

(
T −∑

α lαtαenc

)L−1∏
α

(
1 − lα(lα − 1)Btαenc

/
TH

)
L!�L−V

∏
α tαenc

. (35)

To obtain a product of the V different encounter times in the numerator we can take r of them
from the product over α and V − r of them from the bracket with the exponent L − 1. The
corresponding coefficient is obtained by combinatorial considerations. Then we sum over all
values of r from 0 to V , and the result is

zT (s, u)

L

⇒ e−BT/TH T

L!�L−V

V∑
r=0

T L−V +r−1Br(L − 1)!(−1)V
∏

lvl

T r
H (L − V − 1 + r)!r!

×
∑

α1,...,αr

distinct

(
lα1 − 1

)× · · · × (
lαr

− 1
)
. (36)

We insert this into (33), evaluate the integral with formula (28), and obtain

Kv(τ, x) ∼ κN(v)
e−Bτ

L

V∑
r=0

τL−V +r+1Br(−1)V
∏

lvl

(L − V − 1 + r)!r!

×
∑

α1,...,αr

distinct

(
lα1 − 1

)× · · · × (
lαr

− 1
)
. (37)

Equation (37) is the main result of this paper. It gives an explicit form for the semiclassical
contributions to the form factor from orbit pairs that differ in encounter regions described by a
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Table 1. Contribution of different types of orbit pairs to the parametric spectral form factor.

v L V Kv(τ, x)/(κN(v)) N(v), no TRS N(v), TRS

(2)1 2 1 −e−Bτ (τ 2 + Bτ 3) – 1

(2)2 4 2 e−Bτ
(
τ 3 + Bτ 4 + B2τ5

6

)
1 5

(3)1 3 1 −e−Bτ (τ 3 + Bτ 4) 1 4

(2)3 6 3 −e−Bτ
(

2τ4

3 + 2Bτ5

3 + B2τ6

6 + B3τ7

90

)
– 41

(2)1(3)1 5 2 e−Bτ
(

3τ4

5 + 3Bτ5

5 + B2τ6

10

)
– 60

(4)1 4 1 −e−Bτ
(

τ4

2 + Bτ5

2

)
– 20

(2)4 8 4 e−Bτ
(

τ5

3 + Bτ6

3 + B2τ7

10 + B3τ8

90 + B4τ9

2520

)
21 509

(2)2(3)1 7 3 −e−Bτ
(

2τ5

7 + 2Bτ6

7 + B2τ7

14 + B3τ8

210

)
49 1092

(2)1(4)1 6 2 e−Bτ
(

2τ5

9 + 2Bτ6

9 + B2τ7

30

)
24 504

(3)2 6 2 e−Bτ
(

τ5

4 + Bτ6

4 + B2τ7

20

)
12 228

(5)1 5 1 −e−Bτ
(

τ5

6 + Bτ6

6

)
8 148

vector v. The results for the different types of encounters with L−V � 4 are shown in table 1.
The vectors v are represented in the form (2)v2(3)v3 . . . and the horizontal lines separate vectors
v with different value of L − V . The numbers N(v) are the same as for the spectral form
factor [11].

To find the total contribution to the form factor we now multiply the middle column that
contains Kv(τ, x)/(κN(v)) by κ and N(v), add the diagonal approximation and sum over
different v. If we do that for all orbits pairs with L−V � 8 for the case without time reversal
symmetry (κ = 1), we obtain the expansion for the form factor in τ up to ninth order

Ksc(τ, x) = e−Bτ

[
τ +

B2τ 5

6
+

B4τ 9

120
+ · · ·

]
. (38)

This agrees with the first three terms of the expansion (12) in the section on RMT. It is
noticeable that when summing over terms with the same value of L − V , that all terms cancel
apart from the highest order term from orbit pairs with only 2-encounters. In fact we will show
this using a recurrence relation in the appendix. This allows us to calculate the expansion of
the form factor to all orders in τ which is done in the next section.

For systems with time reversal symmetry (κ = 2) we sum over all contributions with
L − V � 6, and obtain the expansion of the parametric form factor in τ up to seventh order

Ksc(τ, x) = e−Bτ

[
2τ − 2τ 2 − (2B − 2)τ 3 +

(
2B − 8

3

)
τ 4 +

(
5B2

3
− 8B

3
+ 4

)
τ 5

−
(

5B2

3
− 4B +

32

5

)
τ 6 −

(
41B3

45
− 11B2

5
+

32B

5
− 32

3

)
τ 7 + · · ·

]
. (39)

This agrees with the expansion of the RMT result (15).

6. Systems without time reversal symmetry

In this section we derive the full expansion of the parametric form factor for small τ for the
case of systems without time reversal symmetry. For this purpose we rewrite the expansion
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Ksc(τ, x) = τ e−Bτ +
∑∞

n=2 Kv(τ, x) with Kv(τ, x) given in equation (37) in the following
form:

Ksc(τ, x) = τ e−Bτ +
∞∑

n=2

e−Bτ

(n − 2)!

n−1∑
r=0

Sn[fr(v)]τn+rBr , (40)

where

Sn[fr(v)] =
L−V +1=n∑

v

fr(v)Ñ(v), Ñ(v) = N(v)(−1)V

L

∏
l

lvl , (41)

and the functions fr(v) are given by

fr(v) = (L − V − 1)!

(L − V − 1 + r)!r!

∑
α1,...,αr

distinct

(lα1 − 1) × · · · × (lαr
− 1). (42)

The first two functions are f0(v) = 1 and f1(v) = 1. We need to evaluate the quantities
Sn[fr(v)] for r < n. In the appendix A it is shown that Sn[fr(v)] = 0 for r < n − 1. Hence
the only non-vanishing terms in the expansion (40) are those with r = n − 1. Since r satisfies
r � V we have V � n − 1. Together with the condition L − V = n − 1 we find that 2V � L.
This is only satisfied for orbit pairs with V 2-encounters for which v = (2)V and L = 2V .
The contribution of these orbit pairs to the form factors can be calculated explicitly. We obtain
from equations (41) and (42) with r = V = n − 1, L = 2V , and lα = 2 for all α,

Sn[fn−1(v)] = (L − V − 1)!

(L − V + n − 2)!
Ñ(v) = (−1)n−12n−1(n − 2)!

(2n − 2)!
N(v). (43)

The number N(v) can be obtained from an explicit formula that has been derived for systems
without time reversal symmetry in [24]. In our notation it has the form

N(v) = 1

L + 1

∑
v′�v

(−1)L
′−V ′

L′!(L − L′)!∏
k�2 kvkv′

k!(vk − v′
k)!

. (44)

The notation v′ � v means that the sum runs over all integer vectors v′ whose components
satisfy 0 � v′

k � vk for all k. Furthermore, L′ = L(v′) and V ′ = V (v′). In the case of vectors
v of the form (2)V the only non-vanishing component of v is v2 = V and the sum runs over
all vectors with component v′

2 = m where m = 0, . . . , V . The result is

N(v) = 1

2n − 1

n−1∑
m=0

(−1)m(2m)!(2n − 2m − 2)!

2n−1m!(n − m − 1)!
= (2n − 2)!

2n−1n!

1 − (−1)n

2
, (45)

where the last equality can be found in [25]. The expression vanishes if n is even. With n odd
and V = n − 1 we obtain Sn[fn−1(v)] = 1/n! and the complete expansion of the form factor
is (n = 2k + 1)

Ksc(τ, x) = τ e−Bτ + e−Bτ

∞∑
k=1

τ 4k+1B2k

(2k + 1)!
= sinh(Bτ 2)

Bτ
e−Bτ (46)

in agreement with the RMT result (11).

7. Conclusions

This work is a continuation of recent developments in semiclassical periodic orbit expansions in
chaotic systems. These methods have been applied to several spectral and transport quantities
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in order to demonstrate the universality of quantum fluctuation statistics of chaotic systems.
We extended these ideas to include the dependence on an external parameter, and we obtained a
semiclassical expansion of the parametric spectral form factor K(τ, x) for small τ in agreement
with RMT. The approach of the present paper can be used to include a parameter dependence
for other statistical measures as well.

The main input that is needed for the semiclassical calculation is the distribution of the
parametric velocities of long orbits, which is commonly assumed to be Gaussian. For the
off-diagonal terms one has to consider that the changes of the actions along the different
orbit stretches in an encounter region are almost identical. This induces correlations between
different parts of the same trajectory that have to be taken into account when performing the
Gaussian average.

The limitations of the semiclassical calculations are similar to that for the spectral form
factor. The method shows how to evaluate the periodic orbit correlations that are responsible
for agreement with RMT, but one main open question is to show that terms that have been
neglected do not contribute in leading semiclassical order. Another open point concerns the
region τ > 1. In this regime the random matrix expressions for K(τ, x) have a different
functional form. So far, extensions to this region have relied on the diagonal approximation
[17, 18].

Possible extensions of this paper include the consideration of the nonuniversal regime
for very small values of τ where the Hannay–Ozorio de Almeida sum rule does not apply.
Nonuniversal contributions can be obtained by including explicitly the shortest periodic orbits
or, one may speculate, by setting them in relation to the eigenvalues of a classical evolution
operator as for the diagonal approximation [17].
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Appendix A. Recurrence relations

In this appendix we show that the quantities Sn[fr(v)], defined in (41) and (42), vanish for
r � n−1. The functions fr(v) are defined in terms of a restricted sum in which all summation
indices are distinct. As a first step this sum is expressed by unrestricted sums. How to do this
by combinatorial sieving is discussed, for example, in section 4 of [26].

We first introduce some notation. A set partition F of the set of integers {1, 2, . . . , r} is a
decomposition of this set into disjoint subsets [F1, . . . , Fν]. Then |F1| + · · · + |Fν | = r where
|Fi | is the number of elements in the set Fi . Let us define a generalization of the Kronecker
delta-function

δF
α1,...,αr

=
{

1 if αi = αj for all i and j such that i, j ∈ Fk for some k,
0 otherwise.

(A.1)

Then ∑
α1,...,αr

distinct

[· · ·] =
∑
F

µ(F )
∑

α1,...,αr

δF
α1,...,αr

[· · ·], (A.2)

where the first sum of the right-hand side runs over all set partitions of the set of r integers,
and the corresponding Möbius function is given by

µ(F ) =
ν∏

i=1

(−1)|Fi |−1(|Fi | − 1)!. (A.3)
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If we apply this to the functions fr(v) we obtain

fr(v) = (L − V − 1)!

(L − V − 1 + r)!r!

∑
F

µ(F )gF (v), (A.4)

where

gF (v) =
(∑

k

vk(k − 1)|F1|
)

× · · · ×
(∑

k

vk(k − 1)|Fν |
)

. (A.5)

The expansion of the form factor K(τ) was evaluated in [9, 10] by using recurrence
relations for the number of structures N(v) corresponding to a vector v. These recurrence
relations were obtained by relating orbits with L loops to orbits with L−1 loops by considering
all possible ways of removing a loop (i.e. letting its size shrink to zero).

For systems without time reversal symmetry the relevant recurrence relation is

v2Ñ(v) +
∑
k�2

v
[k,2→k+1]
k+1 kÑ(v[k,2→k+1]) = 0. (A.6)

Here the vector v[k,2→k+1] is obtained from the vector v by decreasing the components vk and
v2 by 1 and increasing the component vk+1 by 1. Hence L(v[k,2→k+1]) = L(v)−k−2+(k+1) =
L(v) − 1 and V (v[k,2→k+1]) = V (v) − 1.

In order to obtain the coefficient of the form factor expansion one has to sum over the
numbers N(v) for all vectors for which L(v) − V (v) + 1 = n. The recurrence relation may
be used for this purpose, because one can show that for each k

L−V +1=n∑
v

v
[k,2→k+1]
k+1 h(v[k,2→k+1]) =

L′−V ′+1=n∑
v′

v′
k+1h(v′), (A.7)

where h(v) is some function of v. One condition is that v1 = v
[k,2→k+1]
1 = 0, because the

vectors describe encounter regions which contain at least two orbit stretches. Summing the
recurrence relation (A.6) over v yields

0 = Sn


v2 +

∑
k�2

vk+1k


 = Sn[L − V ] = (n − 1)Sn[1]. (A.8)

This shows, for example, that all off-diagonal terms of the form factor K(τ, 0) vanish [9, 10].
We want to show in the following that Sn[gF (v)] = 0 if r < n − 1. We consider first the

case when the partition consists of only one subset F1 with |F1| = r . Then gF (v) = gr(v)

where

gr(v) =
∑

k

vk(k − 1)r . (A.9)

We show that Sn[gr(v)] = 0 if r < n − 1 by induction. The statement is true for r = 0,
because Sn[1] = 0 by equation (A.8). Now we fix a value of r < n − 1 and assume that the
statement is true for all smaller values of r. From the definition (A.9) follows that

gr(v
[k,2→k+1]) = gr(v) − hr(k), hr(k) = (k − 1)r − kr + 1. (A.10)

Points that will be important in the following are that hr(1) = 0 and that hr(k) is given by a
finite power series in k whose highest order term is −rkr−1.

Multiplying equation (A.6) by gr(v) and using relation (A.10) we obtain

0 = v2gr(v)Ñ(v) +
∑
k�2

v′
k+1kgr(v

′)Ñ(v′) +
∑
k�2

v′
k+1khr(k)Ñ(v′), (A.11)
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where v′ = v[k,2→k+1]. In the last sum we can start the sum at k = 1, because hr(1) = 0, and
then change the summation index k → k − 1. After summing over all vectors v we obtain

0 = Sn

[
v2gr(v) +

∑
k�2

vk+1kgr(v) +
∑
k�2

vk(k − 1)hr(k − 1)

]

= Sn

[
(L − V )gr(v) −

∑
k�2

vkr(k − 1)r + · · ·
]
. (A.12)

In the second line we used that v2 +
∑∞

k�2 vk+1k = ∑
l�2 vl(k − 1) = L − V , and we wrote

only the highest order term of hr(k − 1). The lower order terms, denoted by the dots, involve
powers (k − 1)m with m < r and can be neglected due to our induction assumption. Hence
we find that

(n − r − 1)Sn[gr(v)] = 0, (A.13)

so that indeed Sn[gr(v)] = 0 if r < n − 1. The proof for general gF (v) is very similar. We
consider the general form

gF (v) =
ν∏

i=1

g|Fi |(v), (A.14)

and we use again induction to prove that Sn[gF ] = 0 if r < n − 1. The statement is true for
r = 0, and we fix a value of r and assume that it is true for all smaller values of r. In order to
use the recurrence relation (A.6) we note that

gF (v) =
ν∏

i=1

(
g|Fi |(v

[k,2→k+1]) + h|Fi |(k)
)
. (A.15)

We multiply equation (A.6) by gF (v) and use relation (A.15) to obtain

0 = v2gF (v)Ñ(v) +
∑
k�2

v′
k+1kgF (v′)Ñ(v′)

+
∑
k�2

v′
k+1k

[
ν∏

i=1

(
g|Fi |(v

′) + h|Fi |(k)
)−

ν∏
i=1

g|Fi |(v
′)

]
Ñ(v′), (A.16)

where we added an additional term and subtracted it again. As before v′ = v[k,2→k+1]. In the
second sum we can start the sum at k = 1, because hi(1) = 0 for all i, and then change the
summation index k → k − 1. After summing over all vectors v we obtain

0 = Sn


v2gF (v) +

∑
k�2

vk+1kgF (v)

+
∑
k�2

vk(k − 1)

[
ν∏

i=1

(
g|Fi |(v) + h|Fi |(k − 1)

)−
ν∏

i=1

g|Fi |(v)

]

= Sn


(L − V )gF (v) +

∑
k�2

vk(k − 1)

ν∑
j=1

(−|Fj |(k − 1)|Fj |−1)
∏
i =j

g|Fi |(v) + · · ·

. (A.17)

In the step from the first to the second line we expanded the first product, inserted the power
series for the functions h|Fi |(k − 1) and wrote only those terms that do not vanish due to the
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induction assumption. We obtain further

0 = Sn


(L − V )gF (v) −

ν∑
j=1

|Fj |g|Fi |(v)
∏
i =j

g|Fi |(v) + · · ·



= (n − 1 − r)Sn[gF (v)], (A.18)

which concludes the proof that Sn[gF (v)] = 0 for r < n − 1.
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